Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System

نویسندگان

  • P. K. Sarkar
  • Amit Kumar Jain
چکیده

Abstract—The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Demand Response Technique on Hybrid Transmission expansion planning and Reactive Power planning

In this paper, a model for hybrid transmission expansion planning (TEP) and reactive power planning (RPP) considering demand response (DR) model has been presented. In this study RPP considered by TEP for its effects on lines capacity and reduction of system expansion costs. On the other hand the expansion of the transmission system is an important subject, especially dealing with the new i...

متن کامل

Demand Response Based Model for Optimal Decision Making for Distribution Networks

In this paper, a heuristic mathematical model for optimal decision-making of a Distribution Company (DisCo) is proposed that employs demand response (DR) programs in order to participate in a day-ahead market, taking into account elastic and inelastic load models. The proposed model is an extended responsive load modeling that is based on price elasticity and customers’ incentives in which they...

متن کامل

A Novel Market Optimization Model in order to Minimizing Environmental Cost Caused by Plants

Nowadays generation capacity in traditional grid depends on fossil fuels and contributes significantly to the increase of pollution emission. In deregulated grids in addition to using demand response programs (DRPs) to reducing the cost of electricity production, peak clipping and improve reliability use of green Plants such as hydro plant, wind plant become widespread. In a smart grid, end use...

متن کامل

Determination of Effective Travel Variables on Air Transport Demand with Using Structural Equation

Air transport system has always been involved in all aspects of life because of its high potential in transporting passengers and goods. In this research we surveys the effects of travel variables on demand of domestic air transport, and for gathering required information from passengers, a questionnaire was designed including 20 effective parameters on air transport demand with questions These...

متن کامل

Designing Incentive-based Demand Response Program for Minimizing Financial Risk of Retailer during Peak Period

In this paper, a customer incentive scheme is proposed for retailers to build an effective demand response program over the peak demand period to minimize the financial risk. Firstly, an objective function is formulated based on the market operation and an optimal incentive price is derived from this objective function. Secondly, the incentive price is employed as a part of an incentive scheme ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016